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Abstract

In this paper, a new neural network (NN) for fault diagnosis of rotating machinery which synthesises the
theory of adaptive resonance theory (ART) and the learning strategy of Kohonen neural network (KNN),
is proposed. For NNs, as the new case occurs, the corresponding data should be added to their dataset for
learning. However, the ‘off-line’ NNs are unable to adapt autonomously and must be retrained by applying
the complete dataset including the new data. The ART networks can solve the plasticity–stability dilemma.
In other words, they are able to carry out ‘on-line’ training without forgetting previously trained patterns
(stable training); it can recode previously trained categories adaptive to changes in the environment and is
self-organising. ART–KNN also holds these characteristics, and more suitable than original ART for fault
diagnosis of machinery. In order to test the proposed network, the vibration signal is selected as raw inputs
due to its simplicity, accuracy and efficiency. The results of the experiments confirm the performance of the
proposed network through comparing with other NNs, such as the self-organising feature maps (SOFMs),
learning vector quantisation (LVQ) and radial basis function (RBF) NNs under the same conditions.The
diagnosis success rate for the ART–Kohonen network was 100%, while the rates of SOFM, LVQ and RBF
networks were 93%, 93% and 89%, respectively.
r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Presently, the fault diagnosis is increasingly intelligent with wide applications of artificial neural
networks (NNs). However, ‘off-line’ NNs are unable to adapt well to unexpected changes in the
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environment. Furthermore, the data of the dataset used to train networks need be added, as new
fault occurs. In this case, the ‘off-line’ network requires to be retrained using the complete dataset.
This can result in a time-consuming and costly process [1]. In the real world, although part of fault
signals can be obtained, it is very difficult to compose the training dataset representing the
features of all faults. Nobody knows what will happen next time. These characteristics limit the
applications of ‘off-line’ NNs in fault diagnosis field. The NNs for fault diagnosis of machinery
are required to learn gradually the knowledge in operating process, and to have the adaptive
function expanding the knowledge continuously without the loss of the previous knowledge
during learning new knowledge. A human brain is able to learn many new events without
necessarily forgetting events that occurred in the past. So we want an intelligent system capable of
adapting ‘on-line’ to changes in the environment, the system should be able to deal with the so-
called stability–plasticity dilemma [2–5]. That is, the system should be designed to have some
degree of plasticity to learn new events in a continuous manner, and should be stable enough to
preserve its previous knowledge, and to prevent new events destroying the memories of prior
training. As a solution to this problem, the adaptive resonance theory (ART) networks were
developed, and have been applied with some success to real-time training and classification [6].
The ART network is an NN that self-organises stable recognition codes in real time in response to
arbitrary sequences of input patterns, and is a vector classifier as the mathematical model for the
description of fundamental behavioural functions of the biological brain such as the learning,
parallel and distributed information storage, short- and long-term memory and pattern
recognition.
The Kohonen neural network (KNN) also is called self-organising feature map network

(SOFM); it defines a forward two-layer NN that implements a characteristic non-linear projection
from the high-dimensional space of sensory or other input signals onto a low-dimensional array of
neurons [7–9]. The KNN consists of three major steps: competition, co-operation and adaptation.
In the first step, the network compares the output values with the input vector according to a
chosen discriminating function. Among the output neurons, only one particular neuron with the
closest relationship to the input vector is picked up and labelled as the winning (best-matching)
neuron. Once the winning neuron is picked up, the next step is to select those neurons within a
predefined neighbourhood. Only the weights of those neurons defined within the topological
neighbourhood of the winning neuron will be updated. The synaptic weights of neurons outside
the neighbourhood will remain unchanged. As the winning neuron best matches the input vector
in the sense of the Euclidean distance, the above learning strategy is able to move the synaptic
weight vectors towards the distribution of the input vectors.
In this paper, we proposed a fault diagnosis network, the adaptive resonance theory–Kohonen

neural network (ART–KNN), which does not destroy the initial learning and can adapt the
additional training data that are suitable for fault diagnosis of rotating machinery. The validity of
ART–KNN is examined through the experimental results.

2. ART–Kohonen neural network (ART–KNN) algorithm

The characteristics of ART networks are suitable for condition monitoring and fault diagnosis.
There are two general classes of ART networks: ART1 and ART2 and ART3. The ART1 is for
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classifying the binary input patterns, while the ART2 and ART3 are for the binary and decimal
input patterns.
But the ART networks have some disadvantages for the fault diagnosis. The input patterns to

input layer are normalised before passing through the adaptive filter that is defined between input
layer and discernment layer. Because the absolute values of input signals represent only the image
brightness and sound level for the image and sound classifications, the relative value normalised is
important to analyse the image and sound discrimination. But, the absolute value of vibration
signal is important information for the fault diagnosis. When it is normalised, some important
information to detect the faults may be lost. At the same time, the ART2 and ART3 adequately
control the noise of input signal; the initial signal becomes fussy after filtering. So the features of
fault signals are destroyed to some degree.
In this paper, the proposed ART–KNN combines the theory of ART with Kohonen’s learning

strategy to realise machinery fault diagnosis. The architecture of ART–KNN is shown in Fig. 1. It
is similar to ART1’s, excluding the adaptive filter. ART–KNN is also formed by two major
subsystems: the attentional subsystem and the orienting subsystem. Two interconnected layers,
discernment layer and comparison layer, which are fully connected both bottom-up and top-
down, comprise the attentional subsystem. The application of a single input vector leads to
patterns of neural activity in both layers. The activity in discernment nodes reinforces the activity
in comparison nodes due to top-down connections. The interchange of bottom-up and top-down
information leads to a resonance in neural activity. As a result, critical features in comparison are
reinforced, and have the greatest activity. The orienting subsystem is responsible for generating a
reset signal to discernment when the bottom-up input pattern and top-down template pattern
mismatch at comparison, according to a similarity. In others words, once it has detected that the
input pattern is novel, the orienting subsystem must prevent the previously organised category
neurons in discernment from learning this pattern (via a reset signal). Otherwise, the category will
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become increasingly non-specific. When a mismatch is detected, the network adapts its structure
by immediately storing the novelty in additional weights. The similarity criterion is set by the
value of the similarity parameter. A high value of the similarity parameter means than only a
slight mismatch will be tolerated before a reset signal is emitted. On the other hand, a small value
means that large mismatches will be tolerated. After the resonance check, if a pattern match is
detected according to the similarity parameter, the network changes the weights of the winning
node.
The learning strategy is introduced by the KNN. The Euclidean distances of all weights

between input vector X and each neuron of the discernment layer are evaluated as the similarity
given by the following equation, the smallest one becomes the winning neuron:

jjBJ � X jjojjBJ � X jj ð j; J ¼ 1; 2;y; n; jaJÞ ð1Þ

where BJ is the weight of the jth neuron in the discernment layer, BJ is the weight of the winning
neuron.
After producing the winning neuron, input vector X returns to the comparison layer. The

absolute similarity S is calculated by

S ¼
jjBJ jj � jjBJ � X jj

jjBJ jj
: ð2Þ

If BJ and X in Eq. (2) are same, jjBJ � X jj is equal to 0, and S is 1. The larger the Euclidean
distance between BJ and X is, the smaller S is. A parameter r is introduced as the evaluation
criterion of similarity. If S > r; it indicates that the Jth cluster is sufficiently similar to X : So X

belongs to the Jth cluster. In order to make the weight more accurate to represent the
corresponding cluster, the weight of the Jth cluster is improved by the following equation:

BJ ¼ ðn�BJ0 þ X Þ=ðn þ 1Þ ð3Þ

where BJ is the enhanced weight, BJ0 is the origin weight, and n is changed time.
On the contrary, as Sor; it means that X is much different with the Jth cluster. Thus, there is

no cluster that matches X in the original network. The network needs one more neuron to
remember this new case by resetting in the discernment layer. The weight of the new neuron is
given by

Bnþ1 ¼ X : ð4Þ

3. Diagnosis system using ART–KNN

3.1. System structure

The fault diagnosis system is shown in Fig. 2. The system mainly consists of three sections: data
acquisition, feature extraction and fault diagnosis. The raw time signal is obtained by the
accelerometer from the machinery fault simulator, shown in Fig. 3, Then the features of the data
are extracted through the discrete wavelet transform and feature extraction algorithms [13].
Wavelet transform is more effective than FFT in terms of data compression and is highly tolerant
to the presence of additive noise and drift in the sensor responses. Feature extraction algorithms
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make data quantity from the view of statistics. Finally, the ART–KNN is trained and used to
classify the faults of machinery.

3.2. Data acquisition

Experiments were performed on a machinery fault simulator, which can simulate the most
common faults, such as misalignment, unbalance, resonance, ball bearing faults and so on. Its
running span is from 0 to 6000 rpm: The schematic of the test apparatus is shown in Fig. 3. It
mainly consists of a motor, a coupling, bearings, discs and a shaft.
The analysed faults are the bearing faults and structural faults, such as unbalance and

misalignment. The faulty bearings were rolling element bearings that damaged on an inner race,
an outer race, a ball and the combination of these faults. The misalignment faults, parallel
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Fig. 2. Architecture of fault diagnosis system.

Fig. 3. Machinery fault simulator.
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misalignment and phase misalignment, were simulated by adjusting the simulator plane highness
and degree. Adding an unbalance weight on the disc at the normal condition creates the unbalance.
A radial acceleration was picked up from an accelerometer located at the top of the right

bearing housing. The shaft speed was obtained by one laser speedometer.
A total of eight conditions were tested: four types of bearing faults (inner race, outer race, ball

and multiple), two misalignments (parallel and angular), one unbalance and one normal
condition. Each condition was measured 20 times continuously. The frequency of used signal is
5000 Hz and the number of sampled data are 16 384. A mobile DSP analyser performed the data
acquisition, and the data were collected into a notebook computer. Parts of the condition signals
are shown in Fig. 4.

3.3. Feature extraction [13]

Firstly, one-dimensional (1-D) discrete wavelet transform was used to decompose the time
signal into three levels. Then the transformed signal and the original signal are estimated by eight
feature parameters (mean, standard deviation, rms, shape factor, skewness, kurtosis, crest factor
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and entropy estimation). Finally, a total of 32 feature parameters were obtained, shown in Fig 5.
However, having too many feature parameters is a burden of networks, much time is needed to
calculate the results. Usually, five to ten parameters are good from the view of calculation time
and accuracy [10,11]. In order to solve this problem, a new parameter evaluation technique is
proposed to select eight parameters that can well represent the fault features from 32 parameters.

Step 1: Calculating the average distance of the same condition data ðdi; jÞ and then getting the
average distance of eight conditions ðdaiÞ:
The equations can be defined as follows:

di; j ¼
1

N � ðN � 1Þ

XN

m;n¼1

jpi; jðmÞ � pi; jðnÞj; ðm; n ¼ 1; 2;y;N; manÞ ð5Þ
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where N is the number of the same condition ðN ¼ 20Þ; pi; j is the eigenvalue, di; j is the average
distance of the same condition, i and j represent the number of parameters and conditions,
respectively. Here

dai ¼
1

M

XM

j¼1

di; j ð6Þ

where M is the number of different conditions ðM ¼ 8Þ:
Step 2: Calculating the average distance between different condition data ðd 0

aiÞ

d 0
ai ¼

1

M � ðM � 1Þ

XM

m;n¼1

jpai;m � pai;nj ðm; n ¼ 1; 2;y;M; manÞ ð7Þ

where d 0
ai is the average distance of different conditions data, and pai; j is the average value of the

same condition 20 data:

pai; j ¼
1

N

XN

n¼1

pi; jðnÞ ðn ¼ 1; 2;y;NÞ: ð8Þ

Step 3: Calculating the ratio dai=d 0
ai:

Step 4: Selecting the eight feature parameters ai from large value to small value (smaller the dai;
the better; on the contrary, bigger the d 0

ai; the better. So bigger ai represents the feature well.):

ai ¼ d 0
ai=dai ð9Þ

where ai is the effectiveness factor of features shown in Fig. 6.
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Fig. 6 shows the computation results of the effectiveness factor ai of 32 feature parameters.
From the results, eight feature parameters are selected such as shape factor, crest factor and
standard error of the time signal, mean and entropy of wavelet transform level 1, shape factor and
standard error of wavelet transform level 2, entropy of wavelet transform level 3, and are used as
the input vectors of the network for fault diagnosis.

3.4. Fault diagnosis

The characteristics of ART–KNN are training and diagnosis together. In this paper, 160 signals
acquired from the experiments and eight feature parameters are used for the training and
diagnosis. The procedure of the training and diagnosis are shown in Table 1. In the table, A is the
number of input data, B is the attribute label of each condition defined in Table 2, C is the input
and output attributes in the network, and D is the neuron number of the network.
In the beginning of the ART–KNN, it is empty. So when the first input vector enters the

network, the symbol ‘‘?’’ appears to ask the attribute of input signal, then produces a new neuron
1 to point at the new cluster 1. When the next vector enters the network, it compares with the only
cluster, 1; cluster 1 wins then returns to compare with this input vector. The similarity S matches
the criteria and the vector is considered as one condition. Depending on Eq. (3), the weight is
improved. The following may be deduced by analogy. Usually, one condition needs many neurons
to study a few times due to the complex conditions. The detailed processing is demonstrated in
Table 3.
From Table 3, we notice that condition 4, bearing ball defect, uses many neurons to learn. The

reason is that its vibration signal is diverse waveform due to complex fault mechanism. In order to
understand the relationships of criterion parameter r; number of neurons and classification
success rate, Figs. 7 and 8 are used to explain it.
The equation of classification success rate CSR is defined by

CSR ¼ C=ðT � NÞ � 100% ð10Þ

where C is the number of accurate classification, T is the number of total data, and N is the
number of generated neurons. ðT � NÞ means the number of used data for test, which is equal to
the input data number minus the training data number.
From Fig. 7, the number of neurons follows the criterion parameter r in the discernment layer.

As r ¼ 1; the number of neurons reaches 160, it indicates all data are used to train the network,
the test data do not exist. It is meaningless in the real world. Synthesising Figs. 7 and 8, one
conclusion can be got that ro0:95; the number of neurons is around 20; but CSR is too low;
r > 0:96; CSR rises, used neurons increase; r > 0:962; the classification success rate reaches 100%.
The network needs not many neurons for this case, comparing with other networks. In view of the
relationship of r; N and CSR, the proposed range is 0.95–0.98. In this paper, r is 0.962; the
corresponding number of neurons is 27, which accords with the results of experiments.
The general trend of CSR as shown in Fig. 8 is increasing with r:However, it is not continuous.

Each cluster is composed of many neurons with the same property, and the cluster region becomes
the summation of total neuron region representing its region. The number of neurons is directly
proportional to r: Because each neuron region becomes small and the number of neurons
increases with increasing r; the region of the cluster changes becomes bigger or smaller depending
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on the space distribution of neurons with the same property. Then, if the distance of adjoining
clusters is close to each other, the classification success rate will be increased or decreased locally.
The advantage of ART–KNN is validated, comparing with conventional networks, the SOFM,

LVQ [10,11] and RBF [12] networks. Same data are used to compare these networks. Half the
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Table 1

Classification procedure and results of ART–Kohonen network

A B C D A B C D A B C D A B C D

1 1 ?:1 1 41 3 ?:3 5 81 5 ?:5 18 121 7 ?:7 24

2 1 1 1 42 3 3 5 82 5 5 18 122 7 7 24

3 1 1 1 43 3 3 5 83 5 5 18 123 7 7 24

4 1 1 1 44 3 3 5 84 5 5 18 124 7 7 24

5 1 1 1 45 3 3 5 85 5 ?:5 18 125 7 7 24

6 1 1 1 46 3 3 5 86 5 ?:5 19 126 7 7 24

7 1 1 1 47 3 3 5 87 5 5 19 127 7 7 24

8 1 1 1 48 3 3 5 88 5 5 18 128 7 7 24

9 1 1 1 49 3 3 5 89 5 5 18 129 7 7 24

10 1 1 1 50 3 3 5 90 5 5 18 130 7 7 24

11 1 ?:1 2 51 3 3 5 91 5 5 18 131 7 ?:7 25

12 1 1 1 52 3 3 5 92 5 5 19 132 7 7 24

13 1 1 2 53 3 3 5 93 5 5 18 133 7 7 25

14 1 1 2 54 3 3 5 94 5 5 18 134 7 7 25

15 1 1 2 55 3 3 5 95 5 5 18 135 7 7 25

16 1 1 2 56 3 3 5 96 5 5 18 136 7 7 25

17 1 1 1 57 3 3 5 97 5 5 19 137 7 7 24

18 1 1 1 58 3 3 5 98 5 5 20 138 7 7 24

19 1 1 1 59 3 3 5 99 5 5 19 139 7 7 24

20 1 1 1 60 3 3 5 100 5 5 19 140 7 7 24

21 2 ?:2 3 61 4 ?:4 6 101 6 ?:6 21 141 8 ?:8 26

22 2 2 3 62 4 4 6 102 6 ?:6 22 142 8 8 26

23 2 2 3 63 4 ?:4 7 103 6 6 22 143 8 8 26

24 2 2 3 64 4 ?:4 8 104 6 6 21 144 8 8 26

25 2 2 3 65 4 4 7 105 6 6 21 145 8 8 26

26 2 2 3 66 4 ?:4 9 106 6 6 21 146 8 8 26

27 2 2 3 67 4 ?:4 10 107 6 6 21 147 8 8 26

28 2 2 3 68 4 ?:4 11 108 6 6 21 148 8 8 26

29 2 2 3 69 4 4 6 109 6 6 21 149 8 8 26

30 2 2 3 70 4 ?:4 12 110 6 6 21 150 8 8 26

31 2 ?:2 4 71 4 ?:4 13 111 6 ?:6 23 151 8 ?:8 27

32 2 2 3 72 4 ?:4 14 112 6 6 21 152 8 8 26

33 2 2 4 73 4 ?:4 15 113 6 6 22 153 8 8 27

34 2 2 4 74 4 4 15 114 6 6 22 154 8 8 27

35 2 2 4 75 4 4 13 115 6 6 22 155 8 8 26

36 2 2 4 76 4 ?:4 16 116 6 6 22 156 8 8 26

37 2 2 3 77 4 ?:4 17 117 6 6 21 157 8 8 26

38 2 2 3 78 4 4 13 118 6 6 21 158 8 8 26

39 2 2 3 79 4 4 11 119 6 6 21 159 8 8 26

40 2 2 3 80 4 4 11 120 6 6 21 160 8 8 26
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data are used for training of the network, the rest for testing and getting the CSR. The results are
as shown in Table 4. The maximum CSR for the ART–KNN was 100% and for the SOFM, LVQ
and RBF networks, the CSRs were 93%, 93% and 89%, respectively.

4. Conclusions

In this paper, a new neural network for fault diagnosis of rotating machinery which synthesises
the adaptive resonance theory (ART) and the learning strategy of Kohonen neural networks
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Table 2

Attribute label of each condition

Condition Normal Bearing defect Misalignment Unbalance

Outer race Inner race Ball Complex Angular Parallel

Label 1 2 3 4 5 6 7 8

Table 3

Number of neurons presenting each condition

Label 1 2 3 4 5 6 7 8 Total

Number of

neurons 2 2 1 12 3 3 2 2 27
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Fig. 7. Relationship of discernment layer neuron number and criterion parameter r:
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(KNN) is proposed. Under the same conditions, four different neural networks were evaluated for
their success rate on fault diagnosis of rotating machinery. The diagnosis success rate of ART–
KNN can reach 100%, while these success rates for SOFM, LVQ and RBF networks were 93%,
93% and 89%, respectively. It also can perform on-line learning without forgetting previous
patterns. These make this approach very promising for the application in the real industry.
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